Structural Analysis of CsoS1A and the Protein Shell of the Halothiobacillus neapolitanus Carboxysome

نویسندگان

  • Yingssu Tsai
  • Michael R Sawaya
  • Gordon C Cannon
  • Fei Cai
  • Eric B Williams
  • Sabine Heinhorst
  • Cheryl A Kerfeld
  • Todd O Yeates
چکیده

The carboxysome is a bacterial organelle that functions to enhance the efficiency of CO2 fixation by encapsulating the enzymes ribulose bisphosphate carboxylase/oxygenase (RuBisCO) and carbonic anhydrase. The outer shell of the carboxysome is reminiscent of a viral capsid, being constructed from many copies of a few small proteins. Here we describe the structure of the shell protein CsoS1A from the chemoautotrophic bacterium Halothiobacillus neapolitanus. The CsoS1A protein forms hexameric units that pack tightly together to form a molecular layer, which is perforated by narrow pores. Sulfate ions, soaked into crystals of CsoS1A, are observed in the pores of the molecular layer, supporting the idea that the pores could be the conduit for negatively charged metabolites such as bicarbonate, which must cross the shell. The problem of diffusion across a semiporous protein shell is discussed, with the conclusion that the shell is sufficiently porous to allow adequate transport of small molecules. The molecular layer formed by CsoS1A is similar to the recently observed layers formed by cyanobacterial carboxysome shell proteins. This similarity supports the argument that the layers observed represent the natural structure of the facets of the carboxysome shell. Insights into carboxysome function are provided by comparisons of the carboxysome shell to viral capsids, and a comparison of its pores to the pores of transmembrane protein channels.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Halothiobacillus neapolitanus Carboxysomes Sequester Heterologous and Chimeric RubisCO Species

BACKGROUND The carboxysome is a bacterial microcompartment that consists of a polyhedral protein shell filled with ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO), the enzyme that catalyzes the first step of CO2 fixation via the Calvin-Benson-Bassham cycle. METHODOLOGY/PRINCIPAL FINDINGS To analyze the role of RubisCO in carboxysome biogenesis in vivo we have created a series of Hal...

متن کامل

CO2 fixation kinetics of Halothiobacillus neapolitanus mutant carboxysomes lacking carbonic anhydrase suggest the shell acts as a diffusional barrier for CO2.

The widely accepted models for the role of carboxysomes in the carbon-concentrating mechanism of autotrophic bacteria predict the carboxysomal carbonic anhydrase to be a crucial component. The enzyme is thought to dehydrate abundant cytosolic bicarbonate and provide ribulose 1.5-bisphosphate carboxylase/oxygenase (RubisCO) sequestered within the carboxysome with sufficiently high concentrations...

متن کامل

Structural Characterization of a Newly Identified Component of α-Carboxysomes: The AAA+ Domain Protein CsoCbbQ

Carboxysomes are bacterial microcompartments that enhance carbon fixation by concentrating ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) and its substrate CO2 within a proteinaceous shell. They are found in all cyanobacteria, some purple photoautotrophs and many chemoautotrophic bacteria. Carboxysomes consist of a protein shell that encapsulates several hundred molecules of RuBisCO,...

متن کامل

The Pentameric Vertex Proteins Are Necessary for the Icosahedral Carboxysome Shell to Function as a CO2 Leakage Barrier

BACKGROUND Carboxysomes are polyhedral protein microcompartments found in many autotrophic bacteria; they encapsulate the CO(2) fixing enzyme, ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) within a thin protein shell and provide an environment that enhances the catalytic capabilities of the enzyme. Two types of shell protein constituents are common to carboxysomes and related microc...

متن کامل

Characterization of the carboxysomal carbonic anhydrase CsoSCA from Halothiobacillus neapolitanus.

In cyanobacteria and many chemolithotrophic bacteria, the CO(2)-fixing enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) is sequestered into polyhedral protein bodies called carboxysomes. The carboxysome is believed to function as a microcompartment that enhances the catalytic efficacy of RubisCO by providing the enzyme with its substrate, CO(2), through the action of the shell p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • PLoS Biology

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2007